Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Biomolecular NMR Assignments ; 29:29, 2021.
Article in English | MEDLINE | ID: covidwho-1210152

ABSTRACT

The SARS-CoV-2 virus is the cause of the respiratory disease COVID-19. As of today, therapeutic interventions in severe COVID-19 cases are still not available as no effective therapeutics have been developed so far. Despite the ongoing development of a number of effective vaccines, therapeutics to fight the disease once it has been contracted will still be required. Promising targets for the development of antiviral agents against SARS-CoV-2 can be found in the viral RNA genome. The 5'- and 3'-genomic ends of the 30 kb SCoV-2 genome are highly conserved among Betacoronaviruses and contain structured RNA elements involved in the translation and replication of the viral genome. The 40 nucleotides (nt) long highly conserved stem-loop 4 (5_SL4) is located within the 5'-untranslated region (5'-UTR) important for viral replication. 5_SL4 features an extended stem structure disrupted by several pyrimidine mismatches and is capped by a pentaloop. Here, we report extensive <sup>1</sup>H, <sup>13</sup>C, <sup>15</sup>N and <sup>31</sup>P resonance assignments of 5_SL4 as the basis for in-depth structural and ligand screening studies by solution NMR spectroscopy.

2.
Biomol NMR Assign ; 15(1): 65-71, 2021 04.
Article in English | MEDLINE | ID: covidwho-1184741

ABSTRACT

The international Covid19-NMR consortium aims at the comprehensive spectroscopic characterization of SARS-CoV-2 RNA elements and proteins and will provide NMR chemical shift assignments of the molecular components of this virus. The SARS-CoV-2 genome encodes approximately 30 different proteins. Four of these proteins are involved in forming the viral envelope or in the packaging of the RNA genome and are therefore called structural proteins. The other proteins fulfill a variety of functions during the viral life cycle and comprise the so-called non-structural proteins (nsps). Here, we report the near-complete NMR resonance assignment for the backbone chemical shifts of the non-structural protein 10 (nsp10). Nsp10 is part of the viral replication-transcription complex (RTC). It aids in synthesizing and modifying the genomic and subgenomic RNAs. Via its interaction with nsp14, it ensures transcriptional fidelity of the RNA-dependent RNA polymerase, and through its stimulation of the methyltransferase activity of nsp16, it aids in synthesizing the RNA cap structures which protect the viral RNAs from being recognized by the innate immune system. Both of these functions can be potentially targeted by drugs. Our data will aid in performing additional NMR-based characterizations, and provide a basis for the identification of possible small molecule ligands interfering with nsp10 exerting its essential role in viral replication.


Subject(s)
Magnetic Resonance Spectroscopy , SARS-CoV-2/chemistry , Viral Regulatory and Accessory Proteins/chemistry , Amino Acid Motifs , Carbon Isotopes , Exoribonucleases/chemistry , Hydrogen , Hydrogen Bonding , Ligands , Methyltransferases , Nitrogen Isotopes , Protein Structure, Secondary , RNA, Viral , Viral Envelope , Viral Nonstructural Proteins/chemistry , Virus Replication , Zinc Fingers
3.
Biomol NMR Assign ; 14(2): 339-346, 2020 10.
Article in English | MEDLINE | ID: covidwho-716391

ABSTRACT

The SARS-CoV-2 genome encodes for approximately 30 proteins. Within the international project COVID19-NMR, we distribute the spectroscopic analysis of the viral proteins and RNA. Here, we report NMR chemical shift assignments for the protein Nsp3b, a domain of Nsp3. The 217-kDa large Nsp3 protein contains multiple structurally independent, yet functionally related domains including the viral papain-like protease and Nsp3b, a macrodomain (MD). In general, the MDs of SARS-CoV and MERS-CoV were suggested to play a key role in viral replication by modulating the immune response of the host. The MDs are structurally conserved. They most likely remove ADP-ribose, a common posttranslational modification, from protein side chains. This de-ADP ribosylating function has potentially evolved to protect the virus from the anti-viral ADP-ribosylation catalyzed by poly-ADP-ribose polymerases (PARPs), which in turn are triggered by pathogen-associated sensing of the host immune system. This renders the SARS-CoV-2 Nsp3b a highly relevant drug target in the viral replication process. We here report the near-complete NMR backbone resonance assignment (1H, 13C, 15N) of the putative Nsp3b MD in its apo form and in complex with ADP-ribose. Furthermore, we derive the secondary structure of Nsp3b in solution. In addition, 15N-relaxation data suggest an ordered, rigid core of the MD structure. These data will provide a basis for NMR investigations targeted at obtaining small-molecule inhibitors interfering with the catalytic activity of Nsp3b.


Subject(s)
Adenosine Diphosphate Ribose/metabolism , Apoproteins/chemistry , Betacoronavirus/metabolism , Carbon-13 Magnetic Resonance Spectroscopy , Nitrogen Isotopes/chemistry , Proton Magnetic Resonance Spectroscopy , Viral Nonstructural Proteins/chemistry , Amino Acid Sequence , Apoproteins/metabolism , Protein Domains , Protein Structure, Secondary , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL